mmmm 600

SQL FOR MODELING BY
EXAMPLE

ument describe erful but tax — MODEL.

Kamil Stawiarski — SQL For Modeling by example

Environment description

* 0OS-Oracle Linux Server release 6.3 x64
* Database — Oracle Database 11.2.0.3 EE with sample schemas

Article details

In this article, | will describe the most powerful SQL syntax in Oracle Database. SQL For Modeling was
first introduced in Oracle 10g but for some reason it is very unpopular. I've been an Oracle trainer for
8 years now and this topic is covered by ca 1% official trainings that I've seen. And this high score is
often a result of my interference in course agenda. This is very odd, because — as you will see — this
syntax can be very useful.

Quoting after Oracle Documentation:

“The MODEL clause brings a new level of power and flexibility to SQL calculations. With the MODEL
clause, you can create a multidimensional array from query results and then apply formulas (called
rules) to this array to calculate new values. The rules can range from basic arithmetic to simultaneous
equations using recursion. For some applications, the MODEL clause can replace PC-based
spreadsheets. Models in SQL leverage Oracle Database's strengths in scalability, manageability,
collaboration, and security. The core query engine can work with unlimited quantities of data. By
defining and executing models within the database, users avoid transferring large data sets to and
from separate modeling environments. Models can be shared easily across workgroups, ensuring
that calculations are consistent for all applications. Just as models can be shared, access can also be
controlled precisely with Oracle's security features. With its rich functionality, the MODEL clause can
enhance all types of applications.”

If you would like to read more about theory, please refer to documentation:
http://docs.oracle.com/cd/B28359 01/server.111/b28313/sqlmodel.htm

In this article | will focus on examples, assuming that you have strong SQL knowledge — including
window functions. And at least basic knowledge of programming in any structural language.

Ok, enough of talking — let’s see some action!

Kamil Stawiarski — SQL For Modeling by example

CASE 1 - Finding salary in EMPLOYEES tree

The HR.EMPLOYEES table represents people, which were hired in some company.

HR.EMPLOYEES
P * EMPLOYEE_ID NUMBER (6)
FIRST_NAME VARCHAR2 (20 BYTE)
* LAST_NAME VARCHAR2 (25 BYTE)
U * EMAIL VARCHARZ (25 BYTE)
PHONE_NUMBER VARCHAR2 (20 BYTE)
* HIRE_DATE DATE
* JOB_ID VARCHARZ (10 BYTE)
SALARY NUMBER (8,2)
COMMISSION_PCT NUMBER (2,2)
F MANAGER_ID NUMBER (6)

DEPARTMENT_ID NUMBER (4)

& EMP_EMAIL_UK (EMAIL)
= EMP_EMP_ID_PK (EMPLOYEE_ID)

& EMP_NAME_IX (LAST_NAME, FIRST_NAME)
& EMP_MANAGER_IX (MANAGER_ID)

& EMP_DEPARTMENT_IX (DEPARTMENT_ID)
& EMP_JOB_IX (JOB_ID)

Let’s assume that | want to create a report, that will show me: FIRST_NAME, LAST_NAME,
EMPLOYEE_ID, MANAGER_ID, SALARY and
THE_LOWEST_SALARY_OF_EMPLOYEE_WHO_WORKS_DIRECTLY_FOR_A_MANAGAER.

Ilr x F@Relational_l(Untitled_l) x
PEBYR RR &ued

Worksheet Query Builder
leselect employee id, manager id, first name,
2 last name, salary
3| from employees

AV
[Query Result *

& B) B, saL | AllRows Fetched: 107 in 0,018 seconds

3

@ empLOvEE D[MANAGER_ID|f FIRST_NAME [B asT_name [B saary |
1 100 (null) Steven King 24000
2 101 100 Neena Kochhar 17000
3 102 100 Lex De Haan 17000
4 103 l102Alexander Hunold 9000
g 104 103Bruce [Ernst | 6000
d 106] 103valli = [Pataballa | 4800
] 107 103Diana ____ [Lorentz | 4200
9 108 101 Nancy Greenberg 12008
10 109 108 Daniel Faviet 9000
11 110 108 John Chen 8200
12 111 108 Ismael Sciarra 7700
13 112 108 Jose Manuel Urman 7800
14 113 108 Luis Popp 6900
15 114 100 Den Raphaely 11000
16 115 ll14Alexander Khoo 3100
17 116 114Shelli Baida 2900
18 117 l14Sigal Tobias 2800
19 118 114 Guy Himuro 2600
20 119 114 Karen Colmenares 2500
21 120 100 Matthew Weiss 8000
22 121 100 Adam Fripp 8200
23 122 100 Payam Kaufling 7900
24 123 100 Shanta Vollman 6500
25 124 100Kevin Mourgos 5800

Kamil Stawiarski — SQL For Modeling by example

For example — for Alexander Hunold (employee_id=103), the lowest salary from all employees that
are working directly for him is 4200. There are a lot of potential solutions for this problem, for

example:

Both queries are ok, but both have the same issue — accessing the same table twice! Such queries are
ineffective for large scaling sets of data and can produce excessive |10 operations on TEMP tablespace
(direct path read temp and direct path write temp for multipass operations).

Before writing SQL MODEL syntax, let’s look on this set of data in multidimensional view ©

This is SALARY array, indexed by EMPLOYEE_ID

employee_id _

100 24000
101 17000
102 17000
103 9000
104 6000
105 4800

| could get a value of SALARY for EMPLOYEE_ID=100 with this syntax: salary[100]

(NOTE: If SALARY would be unique, this could be also EMPLOYEE_ID array, indexed by SALARY - do
not get trapped in a trap of stereotype thinking)

| could get minimal value for SALARY with this syntax: min(salary)[any]

It can be a little bit confusing, because more natural syntax would be: min(salary[any]) but don’t be
worry —you'll get used to it ©

To solve my example, | need another value for indexing my array — MANAGER_ID.

(NOTE: In model syntax, array is called MEASURE and INDEX is called DIMENSION - just like in
CUBE. | will be using those names in further part of my article)

Kamil Stawiarski — SQL For Modeling by example

employee_id | Manager_id _
100 24000

101 100 17000

102 100 17000

103 102 9000

104 103 6000

105 103 4800

OK. Now | have two dimensions and one measure. So the third row could be signed like this:
salary[102,100]. Of course | don’t need the MANAGER_ID dimension for gaining uniqueness in my
array — | need it to find some specific values — in this case, the minimum value of SALARY for every
direct employee of each manager (for people who are not managers, the value will be NULL).

* For the first row: min(salary)[any,100]

* For the second row: min(salary)[any,101]

* For the third row: min(salary)[any,102]

* 0K, I think You already know what | mean ©...

So, | could say, that loop spins by EMPLOYEE_ID and | use the counter of the loop, to get appropriate
values. I’'m using the EMPLOYEE_ID dimension on the position of MANAGER_ID (this is almost a
JOIN®).

In general | could write it like this: min(salary)[any,cv(employee_id)], where CV stands for: “Current

Value”.

empioyee_id | Vanseer i [ERIN
100 24000 min(salary)[any,cv(employee_id)]

101 100 17000 min(salary)[any,cv(employee_id)]

102 100 17000 min(salary)[any,cv(employee_id)]

103 102 9000 min(salary)[any,cv(employee_id)]

104 103 6000 min(salary)[any,cv(employee_id)]

105 103 4800 min(salary)[any,cv(employee_id)]

Now | have two dimensions (EMPLOYEE_ID and MANAGER_ID) and two measures (SALARY and newly
defined MIN_SAL). Let’s write our SQL based on above information ©

OK, maybe the syntax is not the most intuitive in the world, but if you look closer — it’s logical and
easy. After the MODEL keyword, we defined dimensions and measures — because in EMPLOYEES
table there is no MIN_SAL column, I’'m creating it by defining new measure allocated with 0.

5

Kamil Stawiarski — SQL For Modeling by example

Very important thing is, that after SELECT keyword you don’t specify table columns but measures or
dimensions, used in MODEL. So if you try to use the FIRST_NAME column, you would get error like
below:

ORA-32614: illegal MODEL SELECT expression

So, if we want to display additional columns in our query, we have to use them somewhere in model

syntax — the easiest way is to put them as measures and never use them in RULES section. The final
query:

Notice, that | don’t have to display every dimension or measure that | used in model.

CASE 2 - Finding people employed in the year with greatest
number of hirings.

We could write this example, for example like this:

Now let’s resolve this problem with modeling — | can see here two measures (CNT for counting the

number of employees hired in specific year and RNK for dense_rank) and two dimensions
(EMPLOYEE_ID will provide uniqueness in my array and H_YEAR will provide me desired information
about current year value, which | need to make calculations).

Kamil Stawiarski — SQL For Modeling by example

employee_id | to_char(hire_date, YYYY’)
as H_YEAR

100 2003 count(cnt)[any,cv()] dense_rank() over (order by cnt desc)
101 2005 count(cnt)[any,cv()] dense_rank() over (order by cnt desc)
102 2001 count(cnt)[any,cv()] dense_rank() over (order by cnt desc)
103 2006 count(cnt)[any,cv()] dense_rank() over (order by cnt desc)
104 2007 count(cnt)[any,cv()] dense_rank() over (order by cnt desc)
105 2005 count(cnt)[any,cv()] dense_rank() over (order by cnt desc)

(NOTE: My measures are allocated at the beginning with value “0” — that’s why all rows in my set,
will have this value, before rules will apply. And that’s why | can count my CNT measure — | count
occurrence of values “0”. In Above example | used syntax “CV()” — earlier | used this function with
argument name - here | used it as positional)

The final query could look like this:

Please notice, that | used window function in RULES syntax to find create ranking — in DENSE_RANK()
I’m using CNT measure as normal column. It gives me possibility to combine analytical functions with
other calculated values without using unnecessary subqueries.

CASE 3 — Aggregating rows

One of the most common problems is aggregating rows to columns — the opposite to SPLIT (which is
also quite a big problem®) Suppose we want to create a report that shows DEPARTMENT_NAME and
ids of employees, hired in that department, separated with ‘#'. In 11g database we can use LISTAGG
function to resolve this problem. The query that is using this function could look like this:

Kamil Stawiarski — SQL For Modeling by example

In 10g database we didn’t have this function, so solving this problem was much harder. Often
CONNECT BY functionality was used to produce desired result. For example:

Unfortunately this syntax can cause a lot of memory usage in PGA buffer.

Now, let’s try to use model syntax — | would like to execute rules for each department separately — to
achieve this | will use PARTITION BY syntax. My only dimension will be artificial ID based on
ROW_NUMBER() function — thanks to this | will be able to access previous and next elements in my
measures, which are: EMPLOYEE_ID, LEAF (for finding last value after concatenation), EMPS (the
product of the concatenation) — first value of each partition is the same as the first value of
EMPLOYEE_ID measure, each next element is concatenation of previous EMPS value, the ‘#
character and current EMPLOYEE_ID value. As the final step we will find last concatenated record of
each partition by using DENSE_RANK() function. The final query looks like this:

Kamil Stawiarski — SQL For Modeling by example

Notice, the “order by i” syntax — this is “cure” for the following error:

ORA-32637: Self cyclic rule in sequential order MODEL

CASE 4 - Split a string into rows

The next case is very popular — let’s assume that we have such situation — in application we can use a
checkbox to select some elements, which ids are concatenated into a string like this: “10,20,50,40” —
based on this string, application executes query to calculate, for example, the average salary in
departments, represented by those ids. The most obvious solution is to execute a dynamic query
with concatenated “IN” clause — unfortunately this approach causes a lot of hard parsing.

To resolve our problem, using MODEL syntax we will use the fact, that assigning new value to
measure which address (dimension) doesn’t exists in the array, will create a new element. Regular
expressions will be also very helpful. Have you ever seen a FOR loop in SQL? ©

lasi
[forifrom 1 to regexp_count(ids[1],’[0-9]+)
increment 1]

1 ‘10,20,50,40’ 10
2 ‘10,20,50,40’ 20
3 ‘10,20,50,40’ 50
4 ‘10,20,50,40’ 40

The final query:

To calculate our average among departments we could use this query like this:

Kamil Stawiarski — SQL For Modeling by example

Of course this “WITH” clause (CTE) to every SQL query we want to execute, would be very
uncomfortable. That’s why | suggest a using simple pipeline function (this is not the subject of our
divagations but what the helll):

So in the above example of calculating average | could use this function like this:

CASE 5 — Generating subaccounts

In an insurance company we have had the following problem: there was a table with columns,
representing ID of main accounts and the number of subaccounts to generate. Of course rule for
generating subaccount ID was quite complicate but for training purposes let’s assume that it was:
MAIN_ACCOUNT_ID.NEXT_SUBACCOUNT.

We have to generate sample data for this case:

Kamil Stawiarski — SQL For Modeling by example

OK, now all we have to do is to answer a simple question — which column is the measure and which is
the dimension? Well, | see only two measures here and no dimension. Additionally, because | want
to generate separate subaccounts for each account I'd like to execute rules separately for each
unique account —so ACCOUNT_ID should be used in PARTITION BY and in MEASURES clause.

When | issue a PARTITION BY clause on my rowset I'll have four one-element arrays — so main
account id and number of accounts will be at the first position in the array. This fact gives me a
simple way to manipulate a FOR loop. So the final question is — where is my dimension? How to index
an array? Well, the simplest way is to generate an artificial dimension like in “CASE 3 — Aggregating
rows”, but this time | don’t have to use ROW_NUMBER() function because, as | mentioned before, at
the beginning I’'m having arrays with just one element. Let’s see the solution:

(NOTE: If you are using the same column more than once in MODEL syntax, you have to use an
alias. Notice, that thanks to the fact, that at the beginning | had only one element per each array |
can find the number of subaccounts (to determine the number of loops) very easily — | have used
the same feature to determine the main account id for generating subaccounts.)

Kamil Stawiarski — SQL For Modeling by example

A few words about performance

OK maybe this syntax is useful and interesting, but what about performance? How can | use it to
scale up my queries? To answer that question we have to use a little bit bigger tables than in

previous examples — fortunately we have SH schema ©

Let’s look closer on this query:

AV

B Explain Plan x [Query Result *
i 4 ‘E, @] @ SQL | Fetched 500 rows in 3,673 seconds
g sum_soLp \@ CALENDAR_QUARTER_DESC |[§ PROD_CATEGORY | cusT_FIRST_NAME \@ CUST_LAST_NAME \
1 782,652001-01 Peripherals and Accessories Gabriel Whitehead
2 2060,952001-01 Peripherals and Accessories Reginald Levi
3 4299,292001-01 Peripherals and Accessories Madeline Conard
4 664,042001-01 Peripherals and Accessories Frederick Gilmore
5 629,582001-01 Peripherals and Accessories Deloris Eaton
6 1439,222001-01 Peripherals and Accessories Madge Gimes
715238,562001-01 Peripherals and Accessories Una Linden
s 9642,912001-01 Peripherals and Accessories Urban Ogletree
9 2537,512001-01 Peripherals and Accessories Lolita Katz
10 29,672001-01 Peripherals and Accessories Idola Tavener
11 121,712001-01 Peripherals and Accessories Morel Gregory
12 2353,322001-01 Software/Other Gladys Roberts
13 108,992001-01 Software/Other Rosamond Colven
14 929,942001-01 Software/Other Bette Stock
15 687,481998-04 Electronics Orilla Riffken
16 45,351998-04 Electronics Ronald Geiss

Based on the results of this query | can tell, that Gabriel Whitehead spent on ‘Peripherals and
Accessories’ 782,655 in the first quarter of 2001 year. Let’s extend this analyze — | want to know what
is average amount spent on the same product category in the same quarter, by people who spent
more money than the examined customer. To achieve this | will issue the following query:

Kamil Stawiarski — SQL For Modeling by example

av
DExplain Plan * [Query Result x
A B @) B saL | Fetched 500 rows in 7,378 seconds

[sum_soLp \Q CALENDAR_QUARTER_DESC |[§ PROD_CATEGORY [CuST_FIRST_NAME [cuST_LAST_NAME \E AVG_BETTER

11293,741998-01 Photo Finlay Hurst 3232,74866425992779783393501
25572,561998-01 Photo Iris Litefoote 7726,52166666666666666666666
32804,861998-01 Photo Teresa Maine 4389,25833333333333333333333
+2809,831998-01 Photo Oriena Baley 4421,54789115646258503401360
51267,641998-01 Photo Bertha Kuehler 3198,24936170212765957446808
61232,991998-01 Photo Ada Nenninger 3069,39198675496688741721854
73285,971998-01 Peripherals and Accessories Yola Mulligan 5108,89563636363636363636363
8§2386,671998-01 Peripherals and Accessories Rachel Lowers 4168,74232142857142857142857
92507,081998-01 Peripherals and Accessories Guido Resnick 4294,40118773946360153256704

Now | can see that Finlay Hurst spent on ‘Photo’ category 1293,745 in the first quarter of 1998 year
and average sale from people who spent more on that category in the same quarter is about
3232,75S.

OK to spice up things a little let’s say that | want to find out how many customers have the
SUM_SOLD/AVG_BETTER ratio lower then 0,0005.

| will use two queries — without modeling:

And with the modeling:

Kamil Stawiarski — SQL For Modeling by example

(NOTE: The gather_plan_statistics hint allows for the collection of extra metrics during the
execution of the query — thanks to it we can display more accurate explain plan for the query. Each
query will be run after flushing the buffer cache and the shared pool and with the 10046 event

enabled.)

t tracefile_identifier='qg_nomodel';

a1
n set events 'lO046 trace name context fo

_quarter_des

no row

Elapsed: 00:40:42,22

14

Kamil Stawiarski — SQL For Modeling by example

As you can see, the first query execution was longer than 40 minutes. What about second query —
with modeling?

ion set tracefile_identifier='g_model';

oh altered.

mne
, products p, times t,
id=p.pr

st_first_name,cust_last_name,

from
mode
dimen

measure

s) [sum_sold>cv(),cv(),cv()]

her_plan_statistics */ *

Only 8 minutes and 42 seconds!

Let’s compare explain plans from our execution — thanks to gather_plan_statistics hint we can use
DBMS_XPLAN.DISPLAY_CURSOR function with ‘ALLSTATS LAST’ parameter, which will show us much
more details than regular explain plan.

Quoting after Oracle documentation:
ALLSTATS - A shortcut for 'IOSTATS MEMSTATS'

IOSTATS - assuming that basic plan statistics are collected when SQL statements are executed (either by using
the gather_plan_statistics hint or by setting the parameter statistics_level to ALL), this format shows 10
statistics for ALL (or only for the LAST as shown below) executions of the cursor.

MEMSTATS - Assuming that PGA memory management is enabled (that is, pga_aggregate_target parameter is
set to a non 0 value), this format allows to display memory management statistics (for example, execution
mode of the operator, how much memory was used, number of bytes spilled to disk, and so on). These
statistics only apply to memory intensive operations like hash-joins, sort or some bitmap operators.

LAST - By default, plan statistics are shown for all executions of the cursor. The keyword LAST can be specified
to see only the statistics for the last execution.

15

Kamil Stawiarski — SQL For Modeling by example

Explain plan for the query without modeling:

table(dbns_: splay_cursor(null,null, 'ALLSTAT.

FORMATION @ 140
. < 520K| 529K (8)|

174 ()|

1346K (8) |

|
1244K (0)

index$_joing
JOIN - Y
FAST FULL SC PRODUCTS_PK
ST FULL SCAN| PRODUC

TABL

PARTITION
TABLE #

:B1 AND "S2"."PROD_CATEGORY"=:B2 AND "S2"."CALENDAR_QUARTER_DE
. "TIME_ID
“PROD_ID")

"CUST_ID")

on table(db plan.display_ r(null,null

111d humb

amount

p
time_id a

p.p

unique single reference
alendar_guar

Plan hash value:

VIEW
SQL MODEL ORDERED
4SH GROUP BY
4SH JOIN
PART JOIN FILTER CREATE
TABLE ACCESS FULL
HASH JOIN
VIEW index$_joing_082 p) 72 |00:00:0
HASH JOIN @96l 1581k
INDEX I SCAN PRODUCT:
SCAN PRODUCTS_PROD_CAT_IX

1826
1826

CUSTOMERS
PARTITION RANGE JOIN-FILTER

Information (identified by

"TIME_ID")
"PROD_ID")

OWwID)
T_ID"="C"."CUST_ID")

Kamil Stawiarski — SQL For Modeling by example

As we can see, the first query caused an excessive temporary space usage. This has happened
because | have used correlated subquery to access the same CTE (Common Table Expression — the
WITH V_SOLD clause) twice — the Cost Based Optimizer transformed CTE into internal temporary

table. We can find the appropriate DDL in the trace file:

In the second query | have used the MODEL syntax to avoid accessing the same rowset twice — in this
example the “V_SOLD” CTE.

Here you can see histograms of wait events for both queries (charts where produced by excellent
tool — Trace Analyzer — developed by Dominic Giles).

No modeling:

db file sequential

B read
direct path read
0,0002169% 5.883% Ofemp P
21,65% = Disk file
operations 1/O
asynch descriptor
] resize
EICSS operation:
0,000002662% query
0,001932% .
' " enq: RO - fast
4,875%] object reuse
0,01129% Ddb file scattered
5,762% read
0[5%000(?1661652‘}9? [Jreliable message
0,000005044%
61,81% [l CSS initialization
SQL*Net message
Dto client
.SQL'Net message
from client
CSS operation:
B 2ction
Wait Type
Modeling:
0,7081% 15,10%
0,009236%
db file
0,01026% [sequential
0,04721% read
Disk file
[J operations
1/0
asynch
[l descriptor
resize
db file
[scattered
read
SQL*Net
[message to
client
SQL*Net
W message
84,12% from client

Wait Type

17

Kamil Stawiarski — SQL For Modeling by example

Now let’s see execution times of this two queries without the additional trace and statistics overhead
but with the PARALLEL hint — each query will be executed two times: first time with empty buffers
and again just after the previous execution.

Query with correlated subquery:

llel(s 4) */ sum(mount um_sold, t.calendar_quarter

from v

_nane,

Fascinating — isn’t it? Goodbye and Happy Modeling! ©
18

